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Abstract

Latent conditional models have become
popular recently in both natural language
processing and vision processing commu-
nities. However, establishing an effec-
tive and efficient inference method on la-
tent conditional models remains a ques-
tion. Actually, inference in graphical mod-
els, even in a linear chain case (the case
discussed in this work), is NP-hard. In
this paper, we describe the latent-dynamic
inference (LDI), which is able to produce
the optimal label sequence on latent con-
ditional models by using efficient search
strategy and dynamic programming. Fur-
thermore, we describe a straightforward
solution on approximating the LDI, and
show that the approximated LDI performs
as well as the exact LDI, while the speed is
much faster. Our experiments demonstrate
that the proposed inference algorithm out-
performs existing inference methods on
a variety of natural language processing
tasks.1

1 Introduction

When data have distinct sub-structures, mod-
els exploiting latent variables are advantageous
in learning (Matsuzaki et al., 2005; Petrov and
Klein, 2007; Blunsom et al., 2008). Actu-
ally, discriminative probabilistic latent variable

1Technical Report of the 1st workshop on Latent Dynam-
ics (Jun 16 2010, Tokyo, Japan). Materials of this Tech-
nical Report are from a published conference paper in pro-
ceedings of European association of computational linguis-
tics 2009 (EACL 2009). For more details of the work, refer
to “Sequential Labeling with Latent Variables: An Exact In-
ference Algorithm and Its Efficient Approximation”, Xu Sun
and Jun’ichi Tsujii, EACL 2009.

models (DPLVMs) have recently become popu-
lar choices for performing a variety of tasks with
sub-structures, e.g., vision recognition (Morency
et al., 2007), syntactic parsing (Petrov and Klein,
2008), and syntactic chunking (Sun et al., 2008).
Morency et al. (Morency et al., 2007) demon-
strated that DPLVM models could efficiently learn
sub-structures of natural problems, and outper-
form several widely-used conventional models,
e.g., support vector machines (SVMs), conditional
random fields (CRFs) and hidden Markov mod-
els (HMMs). Petrov and Klein (Petrov and Klein,
2008) reported on a syntactic parsing task that
DPLVM models can learn more compact and ac-
curate grammars than the conventional techniques
without latent variables. The effectiveness of
DPLVMs was also shown on a syntactic chunking
task by Sun et al. (Sun et al., 2008).

DPLVMs outperform conventional learning
models, as described in the aforementioned pub-
lications. However, inferences on the latent condi-
tional models are remaining problems. In conven-
tional models such as CRFs, the optimal label path
can be efficiently obtained by the dynamic pro-
gramming. However, for latent conditional mod-
els such as DPLVMs, the inference is not straight-
forward because of the inclusion of latent vari-
ables.

In this paper, we propose a new inference al-
gorithm, latent dynamic inference (LDI), by sys-
tematically combining an efficient search strategy
with the dynamic programming. The LDI is an
exact inference method producing the most prob-
able label sequence. In addition, we also propose
an approximated LDI algorithm for faster speed.
We show that the approximated LDI performs as
well as the exact one. We will also discuss a
post-processing method for the LDI algorithm: the
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Figure 1: Comparison between CRF models and
DPLVM models on the training stage. x represents
the observation sequence, y represents labels and
h represents the latent variables assigned to the la-
bels. Note that only the white circles are observed
variables. Also, only the links with the current ob-
servations are shown, but for both models, long
range dependencies are possible.

minimum bayesian risk reranking.
The subsequent section describes an overview

of DPLVM models. We discuss the probability
distribution of DPLVM models, and present the
LDI inference in Section 3. Finally, we report
experimental results and begin our discussions in
Section 4 and Section 5.

2 Discriminative Probabilistic Latent
Variable Models

Given the training data, the task is to learn a map-
ping between a sequence of observations x =
x1, x2, . . . , xm and a sequence of labels y =
y1, y2, . . . , ym. Each yj is a class label for the j’th
token of a word sequence, and is a member of a
set Y of possible class labels. For each sequence,
the model also assumes a sequence of latent vari-
ables h = h1, h2, . . . , hm, which is unobservable
in training examples.

The DPLVM model is defined as follows
(Morency et al., 2007):

P (y|x,Θ) =
∑
h

P (y|h,x,Θ)P (h|x,Θ), (1)

where Θ represents the parameter vector of the
model. DPLVM models can be seen as a natural
extension of CRF models, and CRF models can
be seen as a special case of DPLVMs that employ
only one latent variable for each label.

To make the training and inference efficient, the
model is restricted to have disjointed sets of latent
variables associated with each class label. Each
hj is a member in a set Hyj of possible latent vari-
ables for the class label yj . H is defined as the set

of all possible latent variables, i.e., the union of all
Hyj sets. Since sequences which have any hj /∈
Hyj will by definition have P (y|hj ,x,Θ) = 0,
the model can be further defined as:

P (y|x,Θ) =
∑

h∈Hy1×...×Hym

P (h|x,Θ), (2)

where P (h|x,Θ) is defined by the usual condi-
tional random field formulation:

P (h|x,Θ) =
expΘ·f(h,x)∑
∀h expΘ·f(h,x)

, (3)

in which f(h,x) is a feature vector. Given a train-
ing set consisting of n labeled sequences, (xi,yi),
for i = 1 . . . n, parameter estimation is performed
by optimizing the objective function,

L(Θ) =
n∑

i=1

logP (yi|xi,Θ)−R(Θ). (4)

The first term of this equation represents a condi-
tional log-likelihood of a training data. The sec-
ond term is a regularizer that is used for reducing
overfitting in parameter estimation.

3 Latent-Dynamic Inference

On latent conditional models, marginalizing la-
tent paths exactly for producing the optimal la-
bel path is a computationally expensive prob-
lem. Nevertheless, we had an interesting observa-
tion on DPLVM models that they normally had a
highly concentrated probability mass, i.e., the ma-
jor probability are distributed on top-n ranked la-
tent paths.

Figure 2 shows the probability distribution of
a DPLVM model using a L2 regularizer with the
variance σ2 = 1.0. As can be seen, the probabil-
ity distribution is highly concentrated, e.g., 90%
of the probability is distributed on top-800 latent
paths.

Based on this observation, we propose an infer-
ence algorithm for DPLVMs by efficiently com-
bining search and dynamic programming.

3.1 LDI Inference

In the inference stage, given a test sequence x, we
want to find the most probable label sequence, y∗:

y∗ = argmaxyP (y|x,Θ∗). (5)



 0

 20

 40

 60

 80

 100

0.4K 0.8K 1.2K 1.6K 2K

T
op

-n
 P

ro
ba

bi
lit

y 
M

as
s 

(%
)

n

Figure 2: The probability mass distribution of la-
tent conditional models on a NP-chunking task.
The horizontal line represents the n of top-n latent
paths. The vertical line represents the probability
mass of the top-n latent paths.

For latent conditional models like DPLVMs, the
y∗ cannot directly be produced by the Viterbi
algorithm because of the incorporation of latent
variables.

In this section, we describe an exact inference
algorithm, the latent-dynamic inference (LDI),
for producing the optimal label sequence y∗ on
DPLVMs (see Figure 3). In short, the algorithm
generates the best latent paths in the order of their
probabilities. Then it maps each of these to its as-
sociated label paths and uses a method to compute
their exact probabilities. It can continue to gener-
ate the next best latent path and the associated la-
bel path until there is not enough probability mass
left to beat the best label path.

In detail, an A∗ search algorithm2 (Hart et al.,
1968) with a Viterbi heuristic function is adopted
to produce top-n latent paths, h1,h2, . . .hn. In
addition, a forward-backward-style algorithm is
used to compute the exact probabilities of their
corresponding label paths, y1,y2, . . .yn. The
model then tries to determine the optimal label
path based on the top-n statistics, without enumer-
ating the remaining low-probability paths, which
could be exponentially enormous.

The optimal label path y∗ is ready when the fol-
lowing “exact-condition” is achieved:

P (y1|x,Θ)−(1−
∑

yk∈LPn

P (yk|x,Θ)) ≥ 0, (6)

2A∗ search and its variants, like beam-search, are widely
used in statistical machine translation. Compared to other
search techniques, an interesting point of A∗ search is that it
can produce top-n results one-by-one in an efficient manner.

Definition:
Proj(h) = y ⇐⇒ hj ∈ Hyj for j = 1 . . .m;
P (h) = P (h|x,Θ);
P (y) = P (y|x,Θ).
Input:
weight vector Θ, and feature vector F (h,x).
Initialization:
Gap = −1; n = 0; P (y∗) = 0; LP0 = ∅.
Algorithm:

while Gap < 0 do
n = n+ 1
hn = HeapPop[Θ, F (h,x)]
yn = Proj(hn)
if yn /∈ LPn−1 then

P (yn) = DynamicProg
∑

h:Proj(h)=yn
P (h)

LPn = LPn−1 ∪ {yn}
if P (yn) > P (y∗) then

y∗ = yn

Gap = P (y∗)−(1−
∑

yk∈LPn
P (yk))

else
LPn = LPn−1

Output:
the most probable label sequence y∗.

Figure 3: The exact LDI inference for latent condi-
tional models. In the algorithm, HeapPop means
popping the next hypothesis from the A∗ heap; By
the definition of the A∗ search, this hypothesis (on
the top of the heap) should be the latent path with
maximum probability in current stage.

where y1 is the most probable label sequence
in current stage. It is straightforward to prove
that y∗ = y1, and further search is unnecessary.
This is because the remaining probability mass,
1−

∑
yk∈LPn

P (yk|x,Θ), cannot beat the current
optimal label path in this case.

A simple proof
Given the exact condition

P (y1|x,Θ)−(1−
∑

yk∈LPn

P (yk|x,Θ)) ≥ 0, (7)

suppose there is a label sequence y′ with a larger
probability,

P (y′|x,Θ) > P (y1|x,Θ), (8)

then it follows that y′ /∈ LPn, because otherwise
it will happen that

P (y′|x,Θ) ≤ P (y1|x,Θ) = max
yk∈LPn

P (yk|x,Θ).

(9)



It follows that

P (y′|x,Θ) +
∑

yk∈LPn

P (yk|x,Θ)

> P (y1|x,Θ) +
∑

yk∈LPn

P (yk|x,Θ)

≥ (1−
∑

yk∈LPn

P (yk|x,Θ)) +
∑

yk∈LPn

P (yk|x,Θ)

= 1.

(10)

Therefore, we have

P (y′|x,Θ) +
∑

yk∈LPn

P (yk|x,Θ) > 1, (11)

which is impossible, therefore the assumption of
y′ is impossible.

3.2 An Approximated Version of the LDI
By simply setting a threshold value on the search
step, n, we can approximate the LDI, i.e., LDI-
Approximation (LDI-A). This is a quite straight-
forward method for approximating the LDI. In
fact, we have also tried other methods for approx-
imation. Intuitively, one alternative method is to
design an approximated “exact condition” by us-
ing a factor, α, to estimate the distribution of the
remaining probability:

P (y1|x,Θ)− α(1−
∑

yk∈LPn

P (yk|x,Θ)) ≥ 0.

(12)
For example, if we believe that at most 50% of the
unknown probability, 1 −

∑
yk∈LPn

P (yk|x,Θ),
can be distributed on a single label path, we can
set α = 0.5 to make a loose condition to stop the
inference. At first glance, this seems to be quite
natural. However, when we compared this alter-
native method with the aforementioned approxi-
mation on search steps, we found that it worked
worse than the latter, in terms of performance and
speed. Therefore, we focus on the approximation
on search steps in this paper.
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