Decoding in Latent Conditional Models: A Practically Fast Solution for an NP-hard Problem

Xu Sun (孫 栩) University of Tokyo 2010.06.16

Outline

- Introduction
- Related Work & Motivations
- Our proposals
- Experiments
- Conclusions

Latent dynamics

- Latent-structures (latent dynamics here) are important in information processing
 - Natural language processing
 - Data mining
 - Vision recognition
- Modeling latent dynamics: Latent-dynamic conditional random fields (LDCRF)

Latent dynamics

 Latent-structures (latent dynamics here) are important in information processing

Parsing: Learn refined grammars with latent info

Latent dynamics

 Latent-structures (latent dynamics here) are important in information processing

Parsing: Learn refined grammars with latent info

More common cases: linear-chain latent dynamics

- The previous example is a tree-structure
- More common cases could be linear-chain latent dynamics
 - Named entity recognition
 - Phrase segmentation
 - Word segmentation

Phrase segmentation [Sun+ COLING 08]

A solution without latent annotation: Latent-dynamic CRFs

A solution: Latent-dynamic conditional random fields (LDCRFs)

[Morency+ CVPR 07] * No need to annotate latent info

Phrase segmentation [Sun+ COLING 08]

Current problem & our target

A solution: Latent-dynamic conditional random fields (LDCRFs)

[Morency+ CVPR 07] * No need to annotate latent info

Current problem: Inference (decoding) is an NP-hard problem. Our target: An *almost exact* inference method with fast speed.

Outline

- Introduction
- <u>Related Work & Motivations</u>
- Our proposals
- Experiments
- Conclusions

Traditional methods

- Traditional sequential labeling models
 - Hidden Markov Model (HMM) [Rabiner IEEE 89]
 - Maximum Entropy Model (MEM) [Ratnaparkhi EMNLP 96]
 - Conditional Random Fields (CRF)
 - [Lafferty+ ICML 01]
 - Collins Perceptre
 - [Collins F] C

Arguably the most accurate one. We will use it as one of the baseline.

Conditional random field (CRF) [Lafferty+ ICML 01]

Problem: CRF does not model latent info

Latent-Dynamic CRFs [Morency+ CVPR 07]

Conditional random fields

Latent-Dynamic CRFs [Morency+ CVPR 07]

Latent-Dynamic CRFs [Morency+ CVPR 07]

$$P(\mathbf{y} | \mathbf{x}, \theta) = \sum_{\mathbf{h}: \forall h_j \in \mathcal{H}_{y_j}} P(\mathbf{h} | \mathbf{x}, \theta) = \sum_{\mathbf{h}: \forall h_j \in \mathcal{H}_{y_j}} \frac{1}{\mathcal{Z}(\mathbf{x}, \theta)} \exp\left(\sum_k \theta_k \mathbf{F}_k(\mathbf{h}, \mathbf{x})\right)$$

Good performance reports

- * Outperforming HMM, MEMM, SVM, CRF, etc.
- * Syntactic parsing [Petrov+ NIPS 08]
- * Syntactic chunking [Sun+ COLING 08]
- * Vision object recognition [Morency+ CVPR 07; Quattoni+ PAMI 08]

Outline

- Introduction
- Related Work & <u>Motivations</u>
- Our proposals
- Experiments
- Conclusions

Inference problem

- Prob: Exact inference (find the sequence with max probability) is NP-hard!
 - no fast solution existing

Related work 1: Best hidden path (BHP) [Matsuzaki+ ACL 05]

- Seg-1 0 0 0 0
- Seg-2 () () () () ()

noSeg- <mark>0</mark>	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

- noSeg-1 O O O C noSeg-2 O O O O
 - These are her flowers

Related work 2: Best marginal path (BMP) [Morency+ CVPR 07] Seg-0

 \bigcirc

 \bigcirc

Seg-1 \bigcirc \bigcirc \bigcirc ()

 \bigcirc

 \bigcirc

Seg-2 \bigcirc \bigcirc

noSeg-0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
noSeg 1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

These	are	her	flowers	
noSeg-2 🔿	\bigcirc	\bigcirc	\bigcirc	0
	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Related work 2: Best marginal path (BMP) [Morency+CVPR 07] Seg-0 0.1 **0.4 O.0 ⊖0.1)0.1 O**0.1 **O**0.3 **00.1 O**0.1 Seg-1 **0.6** Seg-2 **0.2 0**.5 **0.0 00.1 0.5** noSeg-0 **O**0.2 **00.1 0.1 O**0.2 noSeg-1 **0.0 00.7 0.0 0.0** noSeg **Result:** Seg Seg Seg NoSeg Seg

Our target

- Prob: E
 max pr
 no fas

h₁

X₁

Challenge/Difficulty: Exact & practically-fast solution on an NP-hard problem

Outline

- Introduction
- Related Work & Motivations
- Our proposals
- Experiments
- Conclusions

Essential ideas

[Sun+EACL 09]

- Fast & exact inference from a key observation
 - A key observation on prob. Distribution
 - Dynamic top-n search
 - Fast decision on optimal result from top-n candidates

Key observation

 Natural problems (e.g., NLP problems) are not completely ambiguous

 Normally, Only a few result candidate are highly probable

 Therefore, probability distribution on latent models could be sharp

Key observation

 Probability distribution on latent models is sharp

These	are	her	flowers	•		
seg	noSeg	seg	seg	seg	P = 0.2	
seg	seg	seg	noSeg	seg	P = 0.3	0.8
seg	seg	seg	seg	seg	P = 0.2	prot
seg	seg	noSeg	noSeg	seg	P = 0.1	
seg	noSeg	seg	noSeg	seg	P =	
	•••		•••		P =	

Key observation

• Pr sh	Ca	andidate	es are unl	known	f probable & changing n automatically
Thes			elf on diff		
seg	noSeg	seg	seg	seg	P = 0.2
seg	seg	seg	noSeg	seg	P = 0.3
seg	seg	seg	seg	seg	P = 0.2 compare
seg	seg	noSeg	noSeg	seg	P = 0.1
seg	noSeg	seg	noSeg	seg	$P = \dots P(unknown)$
•••	•••	•••	•••	•••	$P = \dots \leq 0.2$

A demo on lattice

]	These	are	her	flowers	•
noSeg-2	\bigcirc	\bigcirc	\bigcirc	0	0
noSeg-1	0	0	0	0	0
noSeg- <mark>0</mark>	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc
Seg-2	0	0	0	0	\bigcirc
Seg 2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Seg-1	0	0	0	0	\bigcirc
Seg-0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc

(1) Admissible heuristics for A* search

Seg- <mark>0</mark>	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Seg-1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Seg-2	0	0	0	\bigcirc	\bigcirc
noSeg-0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Т	These	are	her	flowers	•
noSeg-2	0	0	\bigcirc	\bigcirc	0
noSeg-1	0	0	\bigcirc	\bigcirc	\bigcirc
100050	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

(1) Admissible heuristics for A* search

(1) Admissible heuristics for A* search

Seg- <mark>0</mark>	⊖ <mark>h00</mark>	○h10	⊖ <mark>h20</mark>	○h30	○h40
Seg-1	⊖ <mark>h01</mark>	⊖ h11	⊖ <mark>h21</mark>	○h31	○h41
Seg-2	⊖ <mark>h02</mark>	⊖ h12	○h22	○h32	○h42
noSeg- <mark>0</mark>	○h03	○h13	○h23	○h33	○h43
noSeg-1	⊖ <mark>h04</mark>	○h14	⊖ <mark>h24</mark>	⊖ <mark>h34</mark>	○h44
noSeg-2	⊖ h05	○h15	⊖ <mark>h25</mark>	○h35	○h45
Т	These	are	her	flowers	•

(2) Find 1st latent path h1: A* search

(3) Get y1 & P(y1): Forward-Backward algo.

(3) Get y1 & P(y1): Forward-Backward algo. Seg-0 ⊖h10 \supset h00)**h20**)h30 ⊖h40 Oh11)h21 k31 Seg-1)h41)h01 \bigcirc h12 Seg-2 h77 h32 h02 ∋h42 noSeg-0 \bigcirc h03 ∩h13/ ⊖h23 ○h33 \bigcirc h43 noSec 1 ChOI Mh21 ⊖h44 P(seg, noSeg, seg, seg, seg) = 0.2no $P(y^*) = 0.2$ \bigcirc h45 P(unknown) = 1 - 0.2 = 0.8 $P(y^*) > P(unknown)$?

(5) Get y2 & P(y2): Forward-backward algo.

Data flow: the inference algo.

Key: make this exact method as fast as previous approx. methods!

Key: make this exact method as fast as previous approx. methods!

Conclusions

- Inference on LDCRFs is an NP-hard problem (even for linear-chain latent dynamics)!
- Proposed an exact inference method on LDCRFs.
- The proposed method achieves good accuracies yet with fast speed.

Latent dynamics workshop 2010

Latent variable perceptron for structured classification

Xu Sun (孫 栩) University of Tokyo 2010.06.16

A new model for fast training [Sun+IJCAI 09]

Conditional latent variable model:

$$\begin{cases} y^* = \arg \max_{y} \sum_{h: \text{Proj}(h) = y} P(h \mid x, \theta) \\ \text{Normally, batch training} \end{cases}$$

(do weight update after go over all samples)

Our proposal, a new model (Sun et al., 2009):

$$\begin{cases} h^* = \arg \max_{h} P'(h \mid x, \theta) \\ \text{Online training} \\ \text{(do weight update on each sample)} \end{cases}$$

Our proposal: latent perceptron training Seg-0 \bigcirc Seg-1 \bigcirc \bigcirc Seg-2 \bigcirc noSeg-0 \bigcirc \bigcirc noSeg-1 \bigcirc \bigcirc noSeg-2 \bigcirc These flowers her are

Convergence analysis: separability [Sun+IJCAI 09]

With latent variables, is data space still separable?
 Yes

Theorem 1. Given the latent feature mapping $\mathbf{m} = (m_1, \ldots, m_n)$, for any sequence of training examples $(\mathbf{x}_i, \mathbf{y}_i^*)$ which is separable with margin δ by a vector \mathbf{U} represented by $(\alpha_1, \ldots, \alpha_n)$ with $\sum_{i=1}^n \alpha_i^2 = 1$, the examples then will also be latently separable with margin $\overline{\delta}$, and $\overline{\delta}$ is bounded below by

 $\overline{\delta} \ge \delta/T,$ where $T = (\sum_{i=1}^{n} m_i \alpha_i^2)^{1/2}.$

Convergence [Sun+ IJCAI 09]

Is latent perceptron training convergent?
 Yes

Theorem 2. For any sequence of training examples $(\mathbf{x}_i, \mathbf{y}_i^*)$ which is separable with margin δ , the number of mistakes of the latent perceptron algorithm in Figure 1 is bounded above by

number of mistakes $\leq 2T^2M^2/\delta^2$

Comparison to traditional perceptron: *number of mistakes* $\leq R^2 / \delta^2$

A difficult case: inseparable data [Sun+ IJCAI 09]

• Are errors tractable for inseparable data?

#mistakes per iteration is up-bounded

Theorem 3. For any training sequence $(\mathbf{x}_i, \mathbf{y}_i^*)$, the number of mistakes made by the latent perceptron training algorithm is bounded above by

number of mistakes
$$\leq \min_{\overline{\mathbf{U}},\overline{\delta}} (\sqrt{2}M + D_{\overline{\mathbf{U}},\overline{\delta}})^2 / \overline{\delta}^2$$

Summarization: convergence analysis

- Latent perceptron is convergent
 - By adding any latent variables, a separable data will still be separable
 - Training is not endless (will stop on a point)
 - Converge speed is fast (similar to traditional perceptron)
 - Even for a difficult case (inseparable data), mistakes are tractable (up-bounded on #mistakeper-iter)

References & source code

- X. Sun, T. Matsuzaki, D. Okanohara, J. Tsujii. Latent variable perceptron for structured classification. In *IJCAI 2009*.
- X. Sun & J. Tsujii. Sequential labeling with latent variables. In *EACL 2009*.
- Souce code (Latent-dynamic CRF, LDI inference, Latent-perceptron) can be downloaded from my homepage:

http://www.ibis.t.u-tokyo.ac.jp/XuSun