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Latent dynamics

• Latent-structures (latent dynamics here) are 
important in information processing

– Natural language processing

– Data mining

– Vision recognition

• Modeling latent dynamics: Latent-dynamic 
conditional random fields (LDCRF)
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Latent dynamics

• Latent-structures (latent dynamics here) are 
important in information processing

Parsing: Learn refined grammars with latent info
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Latent dynamics

• Latent-structures (latent dynamics here) are 
important in information processing
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More common cases: linear-chain 
latent dynamics

• The previous example is a tree-structure

• More common cases could be linear-chain 
latent dynamics

– Named entity recognition

– Phrase segmentation

– Word segmentation
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These are her               flowers.

seg seg seg noSeg

Phrase segmentation [Sun+ COLING 08]



A solution without latent annotation: 
Latent-dynamic CRFs

These are her               flowers.

seg seg seg noSeg

A solution: Latent-dynamic conditional random 
fields (LDCRFs) 
[Morency+ CVPR 07]

* No need to annotate latent info

Phrase segmentation [Sun+ COLING 08]

7



Current problem & our target

A solution: Latent-dynamic conditional random 
fields (LDCRFs) 
[Morency+ CVPR 07]

* No need to annotate latent info

Current problem: 
Inference (decoding) is an 

NP-hard problem.

Our target:
An almost exact 

inference method 
with fast speed.
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Traditional methods

• Traditional sequential labeling models

– Hidden Markov Model (HMM) 
[Rabiner IEEE 89]

– Maximum Entropy Model (MEM) 
[Ratnaparkhi EMNLP 96]

– Conditional Random Fields (CRF) 
[Lafferty+ ICML 01]

– Collins Perceptron 
[Collins EMNLP 02]

• Problem: not able to model latent structures 
Arguably the most accurate one.

We will use it as one of the baseline.
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Conditional random field (CRF)
[Lafferty+ ICML 01]
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Problem: CRF does not model latent info
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Latent-Dynamic CRFs
[Morency+ CVPR 07]
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Latent-Dynamic CRFs 
[Morency+ CVPR 07]
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Latent-dynamic 

CRFs

Conditional 

random fields

We can think (informally) it as 
“CRF + unsup. learning on latent info”
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Latent-Dynamic CRFs 
[Morency+ CVPR 07]
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Good performance reports
* Outperforming HMM, MEMM, SVM, CRF, etc.
* Syntactic parsing [Petrov+ NIPS 08]

* Syntactic chunking [Sun+ COLING 08]

* Vision object recognition [Morency+ CVPR 07; 

Quattoni+ PAMI 08]
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Inference problem

• Prob: Exact inference (find the sequence with 
max probability) is NP-hard!
– no fast solution existing

x1 x2 x3 x4 xn

h1 h2 h3 h4 hn

y1 y2 y3 y4 yn

Recent fast solutions are only 
approximation methods: 
*Best Hidden Path [Matsuzaki+ ACL 05]

*Best Marginal Path [Morency+ CVPR 07]
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Related work 1: Best hidden path (BHP)
[Matsuzaki+ ACL 05]
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These            are             her         flowers           .
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Related work 1: Best hidden path (BHP)
[Matsuzaki+ ACL 05]
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These            are             her         flowers           .
Result: 

Seg Seg Seg NoSeg Seg
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Related work 2: Best marginal path (BMP)
[Morency+ CVPR 07]

These            are             her         flowers           .
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Related work 2: Best marginal path (BMP)
[Morency+ CVPR 07]

These            are             her         flowers           .
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Our target

• Prob: Exact inference (find the sequence with 
max probability) is NP-hard!
– no fast solution existing

x1 x2 x3 x4 xn

h1 h2 h3 h4 hn

y1 y2 y3 y4 yn

1) Exact inference
2) Comparable speed to existing 

approximation methods 

Challenge/Difficulty:
Exact & practically-fast solution 

on an NP-hard problem
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Essential ideas 
[Sun+ EACL 09]

• Fast & exact inference from a key observation

– A key observation on prob. Distribution

– Dynamic top-n search

– Fast decision on optimal result from top-n 
candidates
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Key observation

• Natural problems (e.g., NLP problems) are not 
completely ambiguous

• Normally, Only a few result candidate are 
highly probable

• Therefore, probability distribution on latent 
models could be sharp 
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Key observation

• Probability distribution on latent models is 
sharp

These are her flowers .
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Key observation

• Probability distribution on latent models is 
sharp

These are her flowers .

seg noSeg seg seg seg

seg seg seg noSeg seg
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seg noSeg seg noSeg seg

… … … … …

P = 0.2
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P = 0.1

P = …

P = …
P(unknown)

≤ 0.2

compare

• Challenge: the number of probable
candidates are unknown & changing

• Need a method which can automatically 
adapt itself on different cases
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A demo on lattice
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These            are             her         flowers           .
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Seg-1

Seg-2

noSeg-0

noSeg-1

noSeg-2

These            are             her         flowers           .

(1) Admissible heuristics for A* search
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(1) Admissible heuristics for A* search
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(1) Admissible heuristics for A* search
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(2) Find 1st latent path h1:
A* search 
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(3) Get y1 & P(y1):
Forward-Backward algo.
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(3) Get y1 & P(y1):
Forward-Backward algo.
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These            are             her         flowers           .

P(seg, noSeg, seg, seg, seg) = 0.2
P(y*) = 0.2

P(unknown) = 1 - 0.2 = 0.8
P(y*) > P(unknown) ?
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(4) Find 2nd latent path h2:
A* search 
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(5) Get y2 & P(y2):
Forward-backward algo.
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(5) Get y2 & P(y2):
Forward-backward algo.
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P(y*) = 0.3
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Data flow: the inference algo.

cycle n

Search for the top-n ranked latent sequence: hn

Compute its label sequence: yn

Compute p(yn) and remaining probability

Find the existing y with max prob: y* 

Decision
No

Yes

Optimal results = y* 37



Key: make this exact method as fast as 
previous approx. methods!

cycle n

Search for the top-n ranked latent sequence: hn

Compute its label sequence: yn

Compute p(yn) and remaining probability

Find the existing y with max prob: y* 

Decision
No

Yes

Optimal results = y*

Speed up the summation: 
dynamic programming

Efficient top-n search: 
“A* Search”
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Key: make this exact method as fast as 
previous approx. methods!

cycle n

Search for the top-n ranked latent sequence: hn

Compute its label sequence: yn

Compute p(yn) and remaining probability

Find the existing y with max prob: y* 

Decision
No

Yes

Optimal results = y* 39

Speeding up: by simply setting a 

threshold on the search step, n



Conclusions

• Inference on LDCRFs is an NP-hard problem 
(even for linear-chain latent dynamics)!

• Proposed an exact inference method on 
LDCRFs.

• The proposed method achieves good 
accuracies yet with fast speed.
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A new model for fast training
[Sun+ IJCAI 09]

: ( )

arg max ( | , )P


 
y h h y

y* h x 
Proj

arg max '( | , )P
h

h* h x 

Conditional latent variable model:

Our proposal, a new model (Sun et al., 2009) :

Normally, batch training 

(do weight update after go over all samples) 

Online training

(do weight update on each sample)

{

{
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These            are             her         flowers           .

Our proposal: 
latent perceptron training
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Our proposal: 
latent perceptron training
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Convergence analysis: separability
[Sun+ IJCAI 09]

• With latent variables, is data space still 
separable?   Yes
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Convergence
[Sun+ IJCAI 09]

• Is latent perceptron training convergent?  

• Comparison to traditional perceptron: 

Yes

Comparison to traditional perceptron: 
2 2    /number of mistakes R 
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A difficult case: inseparable data
[Sun+ IJCAI 09]

• Are errors tractable for inseparable data? 

#mistakes per iteration is up-bounded
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Summarization: convergence analysis

• Latent perceptron is convergent

– By adding any latent variables, a separable data 
will still be separable

– Training is not endless (will stop on a point)

– Converge speed is fast (similar to traditional 
perceptron)

– Even for a difficult case (inseparable data), 
mistakes are tractable (up-bounded on #mistake-
per-iter)
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