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平山　淳一郎∗

Jun-ichiro Hirayama

アーポ ヒバリネン†

Aapo Hyvärinen

石井 信‡

Shin Ishii

Abstract: Several authors have recently proposed sparse estimation techniques for time-

varying Markov networks, in which both graph structures and model parameters may

change with time. In this study, we extend a previous approach with a low-rank as-

sumption on the matrix of parameter sequence, using a recent technique of nuclear norm

regularization. This can potentially improve the estimation performance by reducing the

effective degree of freedom of the estimation which tends to be very high in large-scale

time-varying networks. We derive a simple algorithm based on the alternating direction

method of multipliers (ADMM) which can effectively utilize the separable structure of our

convex minimization problem. A breif summary of a simulation result is presented, which

shows the nuclear norm regularization is potentially effective for improving the performance

of recovering time-varying network structures.

1 Introduction

Markov networks (MNs), or Markov random fields

(MRFs), are basic statistical models for representing

dependency networks of multiple random variables, and

have many applications in various fields related to ma-

chine learning. An MN describes a structure of condi-

tional (in)dependences by an undirected graph, and de-

fines a probability distribution with parametric poten-

tials associated with their nodes and edges. Two fun-

damental examples of MNs are the Gaussian Graphical

Model and the Ising model, the latter of which we focus

on in this study.

Recently, several authors have proposed sparse es-

timation techniques, typically using the ℓ1-norm reg-

ularization to prune irrelevant edges, for time-varying

MNs [7, 6, 8] which allows the graph structure and

model parameters to change with time. They showed
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that time-varying MNs may be estimated by incorpo-

rating certain mechanisms of temporal smoothing into

the sparse estimation framework.

Here, extending an approach in [6] for the Ising model,

we propose a new and effective approach to estimating

time-varying Markov network based on an additional

assumption that the parameter matrix, whose column

is the vector of all the model parameters at a single

time step, have a relatively low rank. This assumption

is expected to be effective for reducing the degree of

freedom of the parameter matrix, which tends to be

very high in large-scale time-varying networks.

2 Proposed method

Let y = (y1, y2, . . . , yD)⊤ ∈ {−1, 1}D be a binary

observed vector. Then, the Ising model is given by

p(y;θ) =
1

Z(θ)
exp

(∑
i<j

θijyiyj +
∑
i

θiiyi

)
, (1)

where Z(θ) =
∑

y exp
(∑

i<j θijyiyj +
∑

i θiiyi

)
is the

partition function. The first summation in the expo-

nent is over all pairs (i, j) that satisfy i < j, and we

put all the C = D(D + 1)/2 parameters in a vector

θ ∈ RC . The corresponding undirected graph to this

model has nodes i = 1, 2, . . . , D, and any pair of nodes

(i, j) is connected if and only if θij is non-zero.



Now suppose the parameter vector θ is time-dependent,

indexed by a superscript n = 1, 2, . . . , N , and define a

parameter matrix Θ = (θ1, . . . ,θN ) ∈ RC×N . In order

to effectively estimate Θ from a given observed time

series y1,y2, . . . ,yN , we introduce a convex minimiza-

tion problem:

minimize
Θ

f(Θ) + ∥Λ ◦Θ∥1 + η∥Θ∥∗, (2)

where the first term is a kernel-smoothed loss function

as used in the previous studies on time-varying MNs [8,

6], given by

f(Θ) =
1

N

N∑
n=1

N∑
m=1

φ (|m− n|) l(ym,θm). (3)

Here, we use the negative logarithm of the pseudolike-

lihood [2], i.e. l(y,θ) := −
∑D

i=1 log p(y
m
i | ym

\i;θ
n), for

the loss measure; ∥Θ∥1 denotes the ℓ1-norm for a long

vector that concatenates all the columns in Θ, where

Λ = (λ,λ, . . . ,λ) contains the vector of regularization

coefficients, λ ∈ [0,∞)C , which is assumed to be com-

mon for all the time steps; ∥Θ∥∗ denotes the nuclear

norm (or trace norm) [3], which is defined as the sum-

mation of all the singular values of Θ, where η ≥ 0 is

the regularization coefficient. Since all the three terms

are convex, the problem (2) itself is also convex.

We employ the alternating direction method of mul-

tipliers (ADMM) [1] to solve the convex minimization

problem introduced here. See [4, 5] for the detail of

our algorithm.

3 Simulation result

Here, we briefly summarize an experimental result

with a toy problem (see [4] for more details); other

results will be found in [5].

In this experiment, the dataset was sampled from

the Ising model (1) with a time-varying parameters.

The dimensionality of observations was D = 7 and the

length of time-series N = 200. The parameter space

was then R28, but every θn was constrained to be in a

three-dimensional subspace, according to

θn = sn1a
1 + sn2a

2 + sn3a
3, (4)

and thus rank(Θ) = 3. Here, we chose the three ba-

sis elements, a1, a2 and a3, so that they correspond

respectively to the three graphs in the left column of

Fig. 1, and their non-zero elements (i.e., edge weights)
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図 1: Three graphs corresponding to the basis elements

(left) and the time-series of their coefficients (right)

used for generating a sparse parameter time-series that

are embedded in a three-dimensional subspace.

were uniformly set at 0.5. The right column of Fig. 1

also shows time-series of their coefficients, sn1 , s
n
2 and

sn3 , which only took 0 or 1 for simplicity.

We used a rectangular window function for temporal

smoothing:

φ(|m− n|) =

1/w |m− n| ≤ τ

0 otherwise
(5)

where w = 2τ +1. We examined several values for the

time-window width at w = 5, 9, 13 and 17 (τ = 2, 4, 6

and 8). The regularization coefficient for the ℓ1-norm

was set by λii = 0 and λij = λ (i ̸= j) with various

values of λ.

We evaluated the performance of structure recovery

with the Area Under the ROC Curve (AUC) by re-

garding it as a binary classification problem. In other

words, from the final estimate of Θ obtained as above,

we have a binary classifier which says whether a single

weight θnij belongs to the class of non-zero weights or to

that of weights equal to zero for each i ̸= j and n. The

performance of this detection can be quantified by an

ROC curve, and the area under the curve is quantified

by the trapezoidal rule.

Figure 2 plots the AUC versus log10 η. This shows

that the performance of structure recovery was im-

proved in all the window widths by introducing low-

rank regularization within an appropriate range of η.

4 Summary

We have proposed a new “sparse and low-rank” es-

timation framework of time-varying MNs, particularly

using an Ising model as a concrete example of MNs. An
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図 2: Area Under the ROC Curve versus strength of

low-rank regularization (log η). The horizontal dashed

lines indicate the AUC values when η = 0 for each w.

experiment with artificially-generated dataset showed

that the low-rank regularization can potentially im-

prove the estimation performance over those only us-

ing sparsity and local smoothness. A full-length report

including a real-data experiment will be found in [5].
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